Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3466, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658539

RESUMO

Thermal losses in photoelectric devices limit their energy conversion efficiency, and cyclic input of energy coupled with pyroelectricity can overcome this limit. Here, incorporating a pyroelectric absorber into a photovoltaic heterostructure device enables efficient electricity generation by leveraging spontaneous polarization based on pulsed light-induced thermal changes. The proposed pyroelectric-photovoltaic device outperforms traditional photovoltaic devices by 2.5 times due to the long-range electric field that occurs under pulse illumination. Optimization of parameters such as pulse frequency, scan speed, and illumination wavelength enhances power harvesting, as demonstrated by a power conversion efficiency of 11.9% and an incident-photon-to-current conversion efficiency of 200% under optimized conditions. This breakthrough enables reconfigurable electrostatic devices and presents an opportunity to accelerate technology that surpasses conventional limits in energy generation.

2.
Adv Sci (Weinh) ; 11(7): e2306408, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083978

RESUMO

Omnidirectional photosensing is crucial in optoelectronic devices, enabling a wide field of view (wFoV) and leveraging potential applications for the Internet of Things in sensors, light fidelity, and photocommunication. The wFoV helps overcome the limitations of line-of-sight communication, and transparent photodetection becomes highly desirable as it enables the capture of optical information from various angles. Therefore, developing a photoelectric device with a 360° wFoV, ultra sensitivity to photons, power generation, and transparency is of utmost importance. This study utilizes a heterojunction of van der Waals SnS with Ga2 O3 to fabricate a transparent photovoltaic (TPV) device showing a 360° wFoV with bifacial onsite power production. SnS/Ga2 O3 heterojunction preparation consists of magnetron sputtering and is free from nanopatterning/nanostructuring to achieve the desired wFoV window device. The device exhibits a high average visible transmittance of 56%, generates identical power from bifacial illumination, and broadband fast photoresponse. Careful analysis of the device shows an ultra-sensitive photoinduced defect-modulated heterojunction and photocapacitance, revealed by the impedance spectroscopy, suggesting photon-flux driven charge diffusion. Leveraging the wFoV operation, the TPV embedded visual and speech photocommunication prototype demonstrated, aiming to help visually and auditory impaired individuals, promising an environmental-friendly sustainable future.

3.
Nat Commun ; 14(1): 5340, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660171

RESUMO

The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets.

4.
J Endocrinol ; 258(3)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578842

RESUMO

Bromodomain-containing protein 7 (BRD7) has emerged as a player in the regulation of glucose homeostasis. Hepatic BRD7 levels are decreased in obese mice, and the reinstatement of hepatic BRD7 in obese mice has been shown to establish euglycemia and improve glucose homeostasis. Of note, the upregulation of hepatic BRD7 levels activates the AKT cascade in response to insulin without enhancing the sensitivity of the insulin receptor (InsR)-insulin receptor substrate (IRS) axis. In this report, we provide evidence for the existence of an alternative insulin signaling pathway that operates independently of IRS proteins and demonstrate the involvement of BRD7 in this pathway. To investigate the involvement of BRD7 as a downstream component of InsR, we utilized liver-specific InsR knockout mice. Additionally, we employed liver-specific IRS1/2 knockout mice to examine the requirement of IRS1/2 for the action of BRD7. Our investigation of glucose metabolism parameters and insulin signaling unveiled the significance of InsR activation in mediating BRD7's effect on glucose homeostasis in the liver. Moreover, we identified an interaction between BRD7 and InsR. Notably, our findings indicate that IRS1/2 is not necessary for BRD7's regulation of glucose metabolism, particularly in the context of obesity. The upregulation of hepatic BRD7 significantly reduces blood glucose levels and restores glucose homeostasis in high-fat diet-challenged liver-specific IRS1/2 knockout mice. These findings highlight the presence of an alternative insulin signaling pathway that operates independently of IRS1/2 and offer novel insights into the mechanisms of a previously unknown insulin signaling in obesity.


Assuntos
Resistência à Insulina , Receptor de Insulina , Animais , Camundongos , Glucose/metabolismo , Homeostase/genética , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/metabolismo , Camundongos Knockout , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo
5.
J Adv Prosthodont ; 15(2): 72-79, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37153009

RESUMO

PURPOSE: The purpose of this in vitro study was to compare the accuracy of various 3D printers and a milling machine. MATERIALS AND METHODS: The die model was designed using CAD (Autodesk Inventor 2018 sp3). The 30 µm cement space was given to the die and the ideal crown of the mandibular left first molar was designed using CAD (ExoCAD). The crowns were produced using the milling machine (Imes-icore 250i) and the 3D printers (Zenith U, Zenith D, W11) and they were divided into four groups. In all groups, the interior of each crown was scanned (Identica blue) and superimposed (Geomagic Control X) with the previously designed die. The difference between the die and the actual crown was measured at specific points. The Kruskal-Wallis test, the Mann-Whitney test, and Bonferroni's method were performed with a statistical analysis software (P < .008 in inter-group comparison P < .001 in intra-group comparison). RESULTS: In all groups, the center of the occlusal area and the anti-rotational dimple area showed significantly greater difference and the marginal area showed the smallest difference comparatively. The mean value of the difference in each area and the sum of the differences were higher in order of W11, Imes-icore 250i, Zenith D, and Zenith U. CONCLUSION: The digital light processing (DLP) method shows higher accuracy compared to the sereolithography (SLA) method using the same resin material.

6.
Front Psychol ; 14: 1141319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251026

RESUMO

As wearing a mask has become a routine of daily life since COVID-19, there is a growing need for psycho-physiological research to examine whether and how mask-fishing effects can occur and operate. Building upon a notion that people are likely to utilize information available from the facial areas uncovered by a mask to form the first impression about others, we posit a curvilinear relationship between the amount of the facial areas covered by a mask and the perception of others' attractiveness such that the attractiveness perception increases initially and then decreases as more facial areas are covered by a mask. To better examine this covering effect, we conduct an experiment using an eye-tracker and also administer a follow-up survey on the facial attractiveness of target persons. Our results showed that the facial attractiveness of target persons increased as the areas covered by a mask increased as in the moderate covering condition where the target persons wore only a facial mask, demonstrating that the mask-fishing was indeed possible thanks to the covering effect of a mask on the facial attractiveness. The experimental results, however, revealed that the mask-fishing effect disappeared as the areas covered increased further as in the excessive covering condition where the target persons' face and forehead were covered with a mask and a bucket hat. More importantly, the eye-tracking data analysis demonstrated that both the number of gaze fixation and revisits per unit area were significantly lower in the moderate covering than in the excessive covering condition, suggesting that participants in the moderate covering were able to form the impression about the target persons using cues available from the eyes and forehead areas such as hairstyle and eye color whereas those in the excessive covering were provided only a limited set of cues concentrated in the eyes area. As a result, the covering effect no longer existed under the excessive covering. Furthermore, our results showed that participants in the moderate covering were more likely than those in the excessive condition to exhibit the higher level of curiosity and perception of beautifulness but perceived the lower level of coldness when evaluating the target persons. The current research offers theoretical contributions and practical implications made from the eye-tracking experiment and discusses possible avenues for further research.

7.
Small ; 19(35): e2301702, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37096932

RESUMO

Can photodetectors be transparent and operate in self-powered mode? Is it possible to achieve invisible electronics, independent of the external power supply system, for on-site applications? Here, a ZnO/NiO heterojunction-based high-functional transparent ultraviolet (UV) photodetector operating in the self-powered photovoltaic mode with outstanding responsivity and detectivity values of 6.9 A W-1 and 8.0 × 1012 Jones, respectively, is reported. The highest IUV /Idark value of 8.9 × 104 is attained at a wavelength of 385 nm, together with a very small dark current value of 9.15 × 10-12 A. A large-scale sputtering method is adopted to deposit the heterostructure of n-ZnO and p-NiO sequentially. This deposition instinctively forms an abrupt junction, resulting in a high-quality heterojunction device. Moreover, developing a ZnO/NiO-heterojunction-based 4 × 5 matrix array with an output photovoltage of 4.5 V is preferred for integrating photodetectors into sensing and imaging systems. This transparent UV photodetector exhibits the fastest photo-response time (83 ns) reported for array configurations, which is achieved using an exciton-induced photovoltage based on a neutral donor-bound exciton. Overall, this study provides a simple method for achieving a high-performance large-scale transparent UV photodetector with a self-powered array configuration.

8.
Nano Lett ; 23(5): 1743-1751, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36811529

RESUMO

P2-Na0.67Ni0.33Mn0.67O2 represents a promising cathode for Na-ion batteries, but it suffers from severe structural degradation upon storing in a humid atmosphere and cycling at a high cutoff voltage. Here we propose an in situ construction to achieve simultaneous material synthesis and Mg/Sn cosubstitution of Na0.67Ni0.33Mn0.67O2 via one-pot solid-state sintering. The materials exhibit superior structural reversibility and moisture insensitivity. In-operando XRD reveals an essential correlation between cycling stability and phase reversibility, whereas Mg substitution suppressed the P2-O2 phase transition by forming a new Z phase, and Mg/Sn cosubstitution enhanced the P2-Z transition reversibility benefiting from strong Sn-O bonds. DFT calculations disclosed high chemical tolerance to moisture, as the adsorption energy to H2O was lower than that of the pure Na0.67Ni0.33Mn0.67O2. A representative Na0.67Ni0.23Mg0.1Mn0.65Sn0.02O2 cathode exhibits high reversible capacities of 123 mAh g-1 (10 mA g-1), 110 mAh g-1 (200 mA g-1), and 100 mAh g-1 (500 mA g-1) and a high capacity retention of 80% (500 mA g-1, 500 cycles).

9.
Front Endocrinol (Lausanne) ; 14: 1152579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38317714

RESUMO

The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85ß. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85ß. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85ß has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85ß have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85ß promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85ß regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85ß, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Neoplasias , Camundongos , Animais , Resistência à Insulina/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Camundongos Knockout , Insulina/metabolismo , Glucose , Isoformas de Proteínas
10.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583574

RESUMO

Magnesium-sulfur (Mg-S) batteries are emerging as a promising alternative to lithium-ion batteries, due to their high energy density and low cost. Unfortunately, current Mg-S batteries typically suffer from the shuttle effect that originates from the dissolution of magnesium polysulfide intermediates, leading to several issues such as rapid capacity fading, large overcharge, severe self-discharge, and potential safety concern. To address these issues, here we harness a copper phosphide (Cu3P) modified separator to realize the adsorption of magnesium polysulfides and catalyzation of the conversion reaction of S and Mg2+ toward stable cycling of Mg-S cells. The bifunctional layer with Cu3P confined in a carbon matrix is coated on a commercial polypropylene membrane to form a porous membrane with high electrolyte wettability and good thermal stability. Density functional theory (DFT) calculations, polysulfide permeability tests, and post-mortem analysis reveal that the catalytic layer can adsorb polysulfides, effectively restraining the shuttle effect and facilitating the reversibility of the Mg-S cells. As a result, the Mg-S cells can achieve a high specific capacity, fast rates (449 mAh g-1 at 0.1 C and 249 mAh g-1 at 1.0 C), and a long cycle life (up to 500 cycles at 0.5 C) and operate even at elevated temperatures.

11.
Nat Commun ; 13(1): 6197, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261435

RESUMO

The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the [Formula: see text] orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L3 and Pr M5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Pr f-electrons create a direct orbital bridge between CuO2 planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

12.
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377791

RESUMO

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

13.
Sci Adv ; 8(6): eabk0832, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138893

RESUMO

The normal state of high-Tc cuprates has been considered one of the essential topics in high-temperature superconductivity research. However, compared to the high magnetic field study of it, understanding a photoinduced normal state remains elusive. Here, we explore a photoinduced normal state of YBa2Cu3O6.67 through a charge density wave (CDW) with time-resolved resonant soft x-ray scattering, as well as a high magnetic field x-ray scattering. In the nonequilibrium state where people predict a quenched superconducting state based on the previous optical spectroscopies, we experimentally observed a similar analogy to the competition between superconductivity and CDW shown in the equilibrium state. We further observe that the broken pairing states in the superconducting CuO2 plane via the optical pump lead to nucleation of three-dimensional CDW precursor correlation. Ultimately, these findings provide a critical clue that the characteristics of the photoinduced normal state show a solid resemblance to those under magnetic fields in equilibrium conditions.

14.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121768

RESUMO

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

15.
J Mol Cell Biol ; 13(12): 889-901, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34751372

RESUMO

Bromodomain-containing protein 7 (BRD7) has been shown to interact with the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), p85, in the insulin signaling pathway. Here, we show that upregulation of hepatic BRD7 improves glucose homeostasis even in the absence of either p85 isoform, p85α or p85ß. However, BRD7 leads to differential activation of downstream effector proteins in the insulin signaling pathway depending on which isoform of p85 is present. In the presence of only p85α, BRD7 overexpression increases phosphorylation of insulin receptor (IR) upon insulin stimulation, without increasing the recruitment of p85 to IR substrate. Overexpression of BRD7 also increases activation of Akt in response to insulin, but does not affect basal phosphorylation levels of Akt. Meanwhile, the phosphorylation of glycogen synthase kinase 3ß (GSK3ß) is increased by overexpression of BRD7. On the other hand, in the presence of only p85ß, BRD7 overexpression does not affect phosphorylation levels of IR, and Akt phosphorylation is not affected by insulin stimulation following BRD7 upregulation. However, BRD7 overexpression leads to increased basal phosphorylation levels of Akt and GSK3ß. These data demonstrate that BRD7's action on glucose homeostasis does not require the presence of both p85 isoforms, and p85α and p85ß have unique roles in insulin signaling in the liver.


Assuntos
Insulina , Fosfatidilinositol 3-Quinase , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
16.
Opt Express ; 29(2): 729-739, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726303

RESUMO

In this paper, we propose a new method for image stitching using an electrowetting-based liquid prism. Several images were obtained by adjusting the voltages applied to four sidewalls of the liquid prism, and a panoramic image was achieved through an image stitching algorithm. The relationship between the tilting angle of the liquid prism and the normal vector of the liquid-liquid interface was presented. Novel fabrication method has been proposed to improve the performance of the liquid prism, including the addition of a new structure to prevent oil isolation, plastic chamber material, plastic laser cutting, and oil selection. The fabricated liquid prism has a size of 5 × 5 × 8 mm, a maximum beam steering angle of ±10.5 °, a response time of 19.1 ms, and a resolution of 14.25 lp/mm. The required number of images according to the overlapping area was presented through the simulation, and the image stitching using two or three images was demonstrated.

17.
Adv Mater ; 33(2): e2006147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270282

RESUMO

Nickel hydroxide represents a technologically important material for energy storage, such as hybrid supercapacitors. It has two different crystallographic polymorphs, α- and ß-Ni(OH)2 , showing advantages in either theoretical capacity or cycling/rate performance, manifesting a trade-off trend that needs to be optimized for practical applications. Here, the synergistic superiorities in both activity and stability of corrugated ß-Ni(OH)2 nanosheets are demonstrated through an electrochemical abuse approach. With ≈91% capacity retention after 10 000 cycles, the corrugated ß-Ni(OH)2 nanosheets can deliver a gravimetric capacity of 457 C g-1 at a high current density of 30 A g-1 , which is nearly two and four times that of the regular α- and ß-Ni(OH)2 , respectively. Operando spectroscopy and finite element analysis reveal that greatly enhanced chemical activity and structural robustness can be attributed to the in situ tailored lattice defects and the strain-induced highly curved micromorphology. This work demonstrates a multi-scale defect-and-strain co-design strategy, which is helpful for rational design and tuned fabrication of next-generation electrode materials for stable and high-rate energy storage.

18.
Nat Commun ; 11(1): 6342, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311507

RESUMO

Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth understanding of the particle-level structure and chemical complexity. In this work, we investigate the Li1.2Ni0.13Mn0.54Co0.13O2 particles morphologically, compositionally, and chemically in three-dimensions. While the composition is generally uniform throughout the particle, the charging induces a strong depth dependency in transition metal valence. Such a valence stratification phenomenon is attributed to the nature of oxygen redox which is very likely mostly associated with Mn. The depth-dependent chemistry could be modulated by the particles' core-multi-shell morphology, suggesting a structural-chemical interplay. These findings highlight the possibility of introducing a chemical gradient to address the oxygen-loss-induced voltage fade in LirNMC layered materials.

19.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992509

RESUMO

Bromodomain is a conserved structural module found in many chromatin-associated proteins. Bromodomain-containing protein 7 (BRD7) is a member of the bromodomain-containing protein family, and was discovered two decades ago as a protein that is downregulated in nasopharyngeal carcinoma. Since then, BRD7 has been implicated in a variety of cellular processes, including chromatin remodeling, transcriptional regulation, and cell cycle progression. Decreased BRD7 activity underlies the pathophysiological properties of various diseases in different organs. BRD7 plays an important role in the pathogenesis of many cancers and, more recently, its roles in the regulation of metabolism and obesity have also been highlighted. Here, we review the involvement of BRD7 in a variety of pathophysiological conditions, with a focus on glucose homeostasis, obesity, and cancer.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
20.
Nat Commun ; 11(1): 4433, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895388

RESUMO

Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi0.8Mn0.1Co0.1O2 (NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...